Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 448
1.
Insect Sci ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38728615

Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.

2.
Article En | MEDLINE | ID: mdl-38706356

BACKGROUND: Intervertebral disc degeneration (IVDD), a key contributor to degenerative spinal diseases such as cervical spondylosis, significantly influences the quality of life of patients. Tuina, historically employed in the clinical management of cervical spondylosis, has demonstrated positive therapeutic outcomes; however, the mechanism of Tuina remains unclear. OBJECTIVE: This study examined the efficacy of Tuina in correcting the imbalanced structure of the cervical spine and its impact on apoptotic chondrocytes within the cervical disc. The underlying mechanisms were explored using a rabbit model of IVDD induced by dynamic and static imbalances. METHODS: The IVDD rabbit model was established by restraining the head in a downward position for 12 weeks (Model group). In the Tuina1 group, treatment was performed on the posterior cervical trapezius muscle daily for 2 weeks, whereas in the Tuina2 group, treatment was performed on both the posterior cervical trapezius and anterior sternocleidomastoid muscles daily for 2 weeks. After treatment, X-ray, micro-computed tomography (CT), histological staining, qRT-PCR, and western blotting were used to evaluate the mechanism by which Tuina inhibits chondrocyte apoptosis. RESULTS: The results demonstrated that Tuina treatment inhibited chondrocyte apoptosis in cervical discs by adjusting the neck structure balance, and a more significant therapeutic effect was observed in the Tuina2 group. Lateral cervical spine X-ray and CT scans in rabbits revealed notable improvements in cervical spine curvature and vertebral structure in the treatment groups compared with those in the Model group. Hematoxylin and eosin staining and TUNEL staining further confirmed the positive impact of Tuina treatment on intervertebral disc tissue morphology and chondrocyte apoptosis. Additionally, western blotting and immunohistochemical analysis showed that Tuina treatment suppressed chondrocyte apoptosis by downregulating Bax and caspase-3 while upregulating Bcl-2. Western blotting results further indicated that Tuina could activate the FAK/PI3K/Akt signaling pathway by mediating integrin-ß1. CONCLUSION: Tuina treatment inhibited chondrocyte apoptosis in cervical discs by activating the FAK/PI3K/Akt signaling pathway, providing convincing evidence to support Tuina treatment as a promising method for IVDD.

3.
J Environ Manage ; 359: 121041, 2024 May 03.
Article En | MEDLINE | ID: mdl-38703651

Bisphenol analogues (BPs) have gained increasing attention in recent years due to their ubiquitousness and potential endocrine disrupting properties in environments. However, little information is available on their spatiotemporal distribution, source apportionment and ecological risk in river sediments, especially the case in river basins with a high population density and those typical regions with agricultural-urban gradient, where land use patterns and intensity of human activity are varying. In this study, field investigations of BPs in the sediment of the entire Qinhuai River Basin, a typical agricultural-suburban agricultural-urban gradient area, were conducted before and after the flood period. Thirty-two sites were sampled for six types of BPs, resulted in no significant difference in the concentration of ΣBPs between the two periods, with ΣBPs ranging from 3.92 to 151 ng/g and 2.16-59.0 ng/g, respectively. Bisphenol A (BPA) was the main contributor. Whereas a multivariate analysis of variance (MANOVA) suggested that the composition structure of BPs had been influenced by water periods. The land use patterns had an impact on the distribution of ΣBPs in river sediments, which was more significant in after the flood period, with ΣBPs in urban rivers was 1.85 times, 3.44 times, and 3.08 times higher than the suburban rivers, agricultural rivers, and reservoirs, respectively. Yet land use types did not significantly alter the composition structure of BPs. The correlation analysis between BPs and the physicochemical properties of sediments showed a significant positive correlation between BPA and total organic carbon (TOC). The positive matrix factorization model (PMF) suggested that BPs in sediments of the basin might be influenced by industrial coatings, textiles, electronics and biopharmaceuticals, as well as urban wastewater or solid waste generated from daily life. The ecological risk assessment posed by BPA, based on the risk quotient, indicated that the ecological risk of BPA in sediments was low for three indicator benthic organisms: crustaceans, worms, and mollusks. However, the risk of BPA in river sediments varied among different land use patterns, with the risk ranking as follows: reservoirs < agricultural rivers < suburban rivers < urban rivers.

5.
ACS Appl Mater Interfaces ; 16(11): 13697-13705, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38467397

In this work, we measure the oxygen kinetic properties of double perovskite PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), a material widely used as the air electrode in solid oxide electrochemical cells, by mass relaxation (MR) and electrical conductivity relaxation (ECR) experiments. MR studies are carried out using thin films deposited on a gallium phosphate piezocrystal microbalance, and ECR studies are performed using a bulk bar sample with 97% theoretical density. Measurements are performed at 600 °C over the temperature oxygen partial pressure range from 10-4 to 0.21 atm. Despite the differences in experimental formats and surface microstructural features, the ks values extracted from the two methods are found to be in good agreement with one another. The rate constant is found to increase with oxygen partial pressure with a power law dependence, rising from 1.0 × 10-6 cm/s at 3.2 × 10-4 atm to 1.2 × 10-4 cm/s at 0.24 atm, as averaged over the oxidation and reduction directions. The rates in the oxidation direction are observed to be slightly higher than those in the reduction direction for a given pair of pO2 values, suggesting that the final pO2 value controls the overall relaxation behavior. The power law exponent describing the dependence of ks on pO2 is found to be 0.74 ± 0.01. The ECR study of the bulk sample reveals that even with a diffusion length of 1.8 mm, the relaxation process is largely free of diffusion limitations, indicating that PBSCF has the high bulk transport properties required for a double-phase boundary oxidation/reduction pathway.

6.
Diabetes Obes Metab ; 26(6): 2329-2338, 2024 Jun.
Article En | MEDLINE | ID: mdl-38488254

AIM: To evaluate whether 1-hour plasma glucose (1hPG) can be a comparable measurement to 2-hour plasma glucose (2hPG) in identifying individuals at high risk of developing diabetes. METHODS: A total of 1026 non-diabetic subjects in the Da Qing IGT and Diabetes Study were included and classified according to baseline postload 1hPG. The participants were followed up and assessed at 6-, 20- and 30year follow-up for outcomes including diabetes, all-cause and cardiovascular mortality, cardiovascular disease (CVD) events, and microvascular disease. We then conducted a proportional hazards analysis in this post hoc study to determine the risks of developing type 2 diabetes and its complications in a '1hPG-normal' group (1hPG <8.6 mmol/L) and a '1hPG-high' group (≥8.6 mmol/L). The predictive values of 1hPG and 2hPG were evaluated using a time-dependent receiver-operating characteristic (ROC) curve. RESULTS: Compared with the 1hPG-normal group, the 1hPG-high group had increased risk of diabetes (hazard ratio [HR] 4.45, 95% CI 3.43-5.79), all-cause mortality (HR 1.46, 95% CI 1.07-2.01), CVD mortality (HR 1.84, 95% CI 1.16-2.95), CVD events (HR 1.39, 95% CI 1.03-1.86) and microvascular disease (HR 1.70, 95% CI: 1.03-2.79) after adjusting for confounders. 1hPG exhibited a higher area under the ROC curve (AUC) for predicting diabetes than 2hPG during the long-term follow-up (AUC [1hPG vs. 2hPG]: 10 years: 0.86 vs. 0.84, p = 0.08; 20 years: 0.88 vs. 0.87, p = 0.04; 30 years: 0.85 vs. 0.82, p = 0.009). CONCLUSIONS: Elevated 1hPG level (≥8.6 mmol/L) was associated with increased risk of developing type 2 diabetes and its long-term complications, and could be considered as a suitable measurement for identifying individuals at high risk of type 2 diabetes.


Blood Glucose , Diabetes Mellitus, Type 2 , Predictive Value of Tests , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Male , Female , Middle Aged , Blood Glucose/analysis , Blood Glucose/metabolism , Follow-Up Studies , China/epidemiology , Glucose Tolerance Test , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/mortality , Glucose Intolerance/blood , Glucose Intolerance/diagnosis , Glucose Intolerance/complications , Adult , Diabetes Complications/blood , Diabetes Complications/epidemiology , Aged , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/blood , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/prevention & control , Diabetic Angiopathies/mortality , ROC Curve
7.
Funct Integr Genomics ; 24(2): 55, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38467948

Huang Qin decoction (HQD) is a traditional Chinese medicine formula for treating colitis, but the effects and molecular mechanism of action of HQD in colitis-associated carcinogenesis (CAC) are still unclear. Therefore, we aimed to determine the beneficial effects of HQD on CAC in mice and to reveal the underlying mechanism involved. AOM/DSS was used to induce CAC in mice, and the effects of HQD on tumorigenesis in mice were examined (with mesalazine serving as a positive control). Mesalazine or HQD treatment alleviated body weight loss and decreased the disease activity index in mice induced by AOM/DSS. Mesalazine or HQD treatment also suppressed the shortening of colon tissue length, the number of tumors, and the infiltration of inflammatory cells. The genes targeted by HQD were predicted and verified, followed by knockout experiments. Elevated SLC6A4 and inhibited serotonin production and inflammation were observed in HQD-treated mice. HQD inhibited the NFκB and NLRP3/caspase1/GSDMD pathways. The therapeutic effect of HQD was diminished in SLC6A4-deficient AOM/DSS mice. Additionally, the downregulation of SLC6A4 mitigated the inhibitory effect of HQD-containing serum on MODE-K cell pyroptosis. Our findings suggest that SLC6A4 is a pivotal regulator of HQD-alleviated CAC via its modulation of the NLRP3/caspase1/GSDMD pathway.


Colitis , Scutellaria baicalensis , Mice , Animals , Mesalamine , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Colitis/chemically induced , Colitis/complications , Colitis/drug therapy , Carcinogenesis/metabolism , Mice, Inbred C57BL
8.
J Hazard Mater ; 468: 133733, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38367435

The pervasive issue of microplastics pollution has garnered public attention, yet urban residents remain unaware of the threat within their living spaces. Urban road dust, as primary reservoirs for environmental microplastics, offers an insightful perspective into their occurrence and characteristics. This study investigated microplastics in the urban road dust in Nanjing, a megacity in eastern China, to reveal their spatiotemporal pattern. The abundance of microplastics in the road dust measured 143.3 ± 40.8 particles/m2, with predominant fragments and suspected tire wear particles, particularly those below 100 µm. Significant spatial variations were observed across urban functional zones (P < 0.05), with commercial and heavy industrial areas experiencing the highest microplastic pollution (up to 223.5 particles/m2). Infrared spectroscopy analysis identified 29 polymer types, with polystyrene (PS), polyamide (PA), and polyvinylidene difluoride (PVDF) prevailing. Light industrial zones exhibited slight contamination (mean = 93.4 particles/m2) but with diverse polymer components (24 types). Redundancy analysis and variation partitioning revealed that urban functional zoning, 7-day accumulated precipitation, and monthly PM2.5 primarily influenced the occurrence and characteristics of microplastics in urban road dust (P = 0.001). This study deepened our understanding of microplastics pollution in urban environments, providing novel insights for effective urban environmental management and improvement.

9.
J Hazard Mater ; 468: 133859, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38402686

The magnetic properties of lake sediments account for close relationships with heavy metal(loid)s (HMs), but little is known about their relationships with chemical fractions (CFs) of HMs. Establishing an effective workflow to predict HMs risk among various machine learning (ML) methods in conjunction with magnetic measurement remains challenging. This study evaluated the simulation efficiency of nine ML methods in predicting the risk assessment code (RAC) and ratio of the secondary and primary phases (RSP) of HMs with magnetic parameters in sediment cores of a shallow lake. The sediment cores were collected and sliced, and the total amount and CFs of HMs, as well as magnetic parameters, were determined. Support vector machine (SVM) outperformed other models, as evidenced by coefficient of determination (R2) > 0.8. Interpretable machine learning (IML) methods were employed to identify key indicators of RAC and RSP among the magnetic parameters. Values of χARM, HIRM, χARM/χ, and χARM/SIRM of sediments ranging in 220-500 × 10-8 m3/kg, 30-40 × 10-5Am2/kg, 15-25, and 0.5-1, respectively, indicated the potential ecological risks of Cd, Hg, and Sb. This study offers new perspectives on the risk assessment of HMs in lake sediments by combining magnetic measurement with IML workflow.

10.
Sci Total Environ ; 920: 170964, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38369146

Bisphenol analogues (BPs), as one of the endocrine disruptors, have received wide attention due to their adverse impacts on ecosystems. However, the seasonal spatiotemporal distribution, source apportionment, and ecological risk of BPs in natural basins are poorly understood. Especially in highly urbanized river basins with the extensive economic development and anthropogenic activities threaten these critical but ecologically fragile regions. In this study, field investigations of BPs in the waters of the entire Qinhuai River Basin (QRB) were conducted in June (before the annual flood period) and August (after the annual flood period) 2023. The Qinhuai River, an important primary tributary of the lower Yangtze River, is located in eastern China and the QRB is characterized by a high population density and dense urbanization. Thirty-two sites were sampled for six types of BPs known to be ubiquitous in the surface water of the QRB. Significant differences in the concentrations of those BPs were found. Specifically, the concentration of total BPs (ΣBPs) was significantly higher before than after the flood period: 20.3-472 ng/L (mean = 146 ng/L) and 14.1-105 ng/L (mean = 35.9 ng/L), respectively. BPA was the main contributor to ΣBPs before the flood, and BPB followed by BPA after the flood. ΣBP concentrations were 12-241 % higher downstream than upstream of wastewater treatment plants (WWTPs). The results of a principal component analysis followed by multiple linear regression (PCA-MLR) suggested that untreated wastewater discharge from the WWTPs is an important source of BPs in the basin, with urban rainfall runoff as another potential source after the flood period. An assessment of the ecological risk of BPs, based on a calculation of the risk quotient, showed that BPA and BPS should be given due attention, and overall ecological risk of BPs pose a low risk to local algae but high and medium risks to invertebrates and fish, respectively.


Phenols , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Ecosystem , Wastewater , Water/analysis , Urbanization , Benzhydryl Compounds/analysis , China
11.
Clin Oral Implants Res ; 35(4): 427-442, 2024 Apr.
Article En | MEDLINE | ID: mdl-38314615

OBJECTIVE: This study aimed to synthesize zinc-incorporated nanowires structure modified titanium implant surface (Zn-NW-Ti) and explore its superior osteogenic and antibacterial properties in vitro and in vivo. MATERIALS AND METHODS: Zn-NW-Ti was synthesized via displacement reactions between zinc sulfate solutions and the titanium (Ti) surface, which was pretreated by hydrofluoric acid etching and hyperthermal alkalinization. The physicochemical properties of the Zn-NW-Ti surface were examined. Moreover, the biological effects of Zn-NW-Ti on MC3T3-E1 cells and its antibacterial property against oral pathogenic bacteria (Staphylococcus aureus, Porphyromonas gingivalis, and Actinobacillus actinomycetemcomitans) compared with sandblasted and acid-etched Ti (SLA-Ti) and nanowires modified Ti (NW-Ti) surface were assessed. Zn-NW-Ti and SLA-Ti modified implants were inserted into the anterior extraction socket of the rabbit mandible with or without exposure to the mixed bacterial solution (S. aureus, P. gingivalis, and A. actinomycetemcomitans) to investigate the osteointegration and antibacterial performance via radiographic and histomorphometric analysis. RESULTS: The Zn-NW-Ti surface was successfully prepared. The resultant titanium surface appeared as a nanowires structure with hydrophilicity, from which zinc ions were released in an effective concentration range. The Zn-NW-Ti surface performed better in facilitating the adhesion, proliferation, and differentiation of MC3T3-E1 cells while inhibiting the colonization of bacteria compared with SLA-Ti and NW-Ti surface. The Zn-NW-Ti implant exhibited enhanced osseointegration in vivo, which was attributed to increased osteogenic activity and reduced bacterial-induced inflammation compared with the SLA-Ti implant. CONCLUSIONS: The Zn-incorporated nanowires structure modified titanium implant surface exhibited improvements in osteogenic and antibacterial properties, which optimized osteointegration in comparison with SLA titanium implant surface.


Dental Implants , Nanowires , Animals , Rabbits , Titanium/pharmacology , Titanium/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Osseointegration , Bacteria , Zinc/chemistry , Zinc/pharmacology , Surface Properties , Osteogenesis
12.
Diabetes Obes Metab ; 26(4): 1188-1196, 2024 Apr.
Article En | MEDLINE | ID: mdl-38168886

AIM: We aimed to investigate the long-term influence of a diet and/or exercise intervention on long-term mortality and cardiovascular disease (CVD) events. METHODS: The Da Qing Diabetes Prevention Study had 576 participants with impaired glucose tolerance (IGT) randomized to diet-only, exercise-only and diet-plus-exercise intervention group and control group. The participants underwent lifestyle interventions for 6 years. The subsequent Da Qing Diabetes Prevention Outcome Study was a prospective cohort study to follow-up the participants for up to 24 years after the end of 6-year intervention. In total, 540 participants completed the follow-up, while 36 subjects lost in follow-up. Cox proportional hazards analysis was applied to assess the influence of lifestyle interventions on targeted outcomes. RESULTS: Compared with controls, the diet-only intervention in people with IGT was significantly associated with a reduced risk of all-cause death [hazard ratio (HR) 0.77, 95% confidence interval (CI) (0.61-0.97)], CVD death [HR 0.67, 95% CI (0.46-0.97)] and CVD events [HR 0.72, 95% CI (0.54-0.96)]. The diet-plus-exercise intervention was significantly associated with a decreased risk of all-cause death [HR 0.64, 95% CI (0.48-0.84)], CVD death [HR 0.54, 95% CI (0.30-0.97)] and CVD events [HR 0.68, 95% CI (0.52-0.90)]. Unexpectedly, the exercise-only intervention was not significantly associated with the reduction of any of these outcomes, although there was a consistent trend towards reduction. CONCLUSIONS: A diet-only intervention and a diet-plus-exercise intervention in people with IGT were significantly associated with a reduced risk of all-cause death, CVD death and CVD events, while an exercise-only intervention was not. It suggests that diet-related interventions may have a potentially more reliable influence on long-term vascular complications and mortality.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Glucose Intolerance , Humans , Glucose Intolerance/complications , Glucose Intolerance/therapy , Diabetes Mellitus, Type 2/complications , Prospective Studies , Incidence , Diet , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/complications , Exercise Therapy , Outcome Assessment, Health Care
13.
Cardiovasc Diabetol ; 23(1): 37, 2024 01 20.
Article En | MEDLINE | ID: mdl-38245731

BACKGROUND: Higher levels of palmitoyl sphingomyelin (PSM, synonymous with sphingomyelin 16:0) are associated with an increased risk of cardiovascular disease (CVD) in people with diabetes. Whether circulating PSM levels can practically predict the long-term risk of CVD and all-cause death remains unclear. This study aimed to investigate whether circulating PSM is a real predictor of CVD death in Chinese adults with or without diabetes. METHODS: A total of 286 and 219 individuals with and without diabetes, respectively, from the original Da Qing Diabetes Study were enrolled. Blood samples collected in 2009 were used as a baseline to assess circulating PSM levels. The outcomes of CVD and all-cause death were followed up from 2009 to 2020, and 178 participants died, including 87 deaths due to CVD. Cox proportional hazards regression was used to estimate HRs and their 95% CIs for the outcomes. RESULTS: Fractional polynomial regression analysis showed a linear association between baseline circulating PSM concentration (log-2 transformed) and the risk of all-cause and CVD death (p < 0.001), but not non-CVD death (p > 0.05), in all participants after adjustment for confounders. When the participants were stratified by PSM-tertile, the highest tertile, regardless of diabetes, had a higher incidence of CVD death (41.5 vs. 14.7 and 22.2 vs. 2.9 per 1000 person-years in patients with and without diabetes, respectively, all log-rank p < 0.01). Individuals with diabetes in the highest tertile group had a higher risk of CVD death than those in the lowest tertile (HR = 2.73; 95%CI, 1.20-6.22). CONCLUSIONS: Elevated PSM levels are significantly associated with a higher 10-year risk of CVD death, but not non-CVD death, in Chinese adults with diabetes. These findings suggest that PSM is a potentially useful long-term predictor of CVD death in individuals with diabetes.


Cardiovascular Diseases , Diabetes Mellitus , Adult , Humans , Cardiovascular Diseases/epidemiology , Sphingomyelins , Follow-Up Studies , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , China/epidemiology , Risk Factors
14.
Food Funct ; 15(3): 1431-1442, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38224462

Probiotic intervention, already showing promise in the treatment of various psychiatric disorders like depression, emerges as a potential therapy for anorexia nervosa (AN) with minimal side effects. In this study, we established an activity-based anorexia (ABA) model to probe the pathogenesis of AN and assess the impact of probiotics on ABA mice. ABA resulted in a compensatory increase in duodenal ghrelin levels, impairing the regulation of feeding and the brain reward system. Intervention with Streptococcus salivarius subsp. thermophilus CCFM1312 ameliorated these ABA-induced effects, and the activation of neurons in the nucleus tractus solitarius (NTS) was observed following probiotic administration, revealing the advantageous role of probiotics in AN through the vagus nerve. Furthermore, our metabolomics analysis of cecal contents unveiled that S. salivarius subsp. thermophilus CCFM1312 modulated gut microbiota metabolism and thereby regulated intestinal ghrelin levels.


Probiotics , Resilience, Psychological , Streptococcus salivarius , Humans , Animals , Mice , Ghrelin , Anorexia , Streptococcus thermophilus
15.
Food Funct ; 15(3): 1562-1574, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38236135

Non-alcoholic fatty liver disease (NAFLD) has become a serious public health issue due to changing dietary patterns and composition. However, the relationship between NAFLD occurrence and food additives, such as preservatives, remains unknown. This study aimed to evaluate the toxicity of parabens, namely methylparaben (MeP) and ethylparaben (EtP), in relation to NAFLD occurrence in mice under different dietary conditions. Exposure to MeP and EtP exacerbated high-fat diet (HFD)-induced obesity, glucose intolerance, higher serum lipid concentrations, and fat accumulation by upregulating genes involved in lipid metabolism. Untargeted metabolomics revealed that arachidonic acid (AA) metabolism was the top enriched pathway upon MeP and EtP exposure in the presence of HFD. 11,12-Epoxyeicosatrienoic acid (11,12-EET) was the most abundant AA metabolite and was significantly reduced upon exposure to MeP or EtP. Moreover, an integrative analysis of differential fecal taxa at the genus level and serum AA metabolites revealed significant associations. In addition, MeP and EtP enhanced lipid accumulation in AML12 cells and HepG2 cells cultured with oleic acid. 11,12-EET supplementation could significantly alleviate lipid accumulation by suppressing the expression of lipid metabolism-related genes and proteins. The present study suggests that chronic exposure to MeP and EtP promoted NAFLD via gut microbiota-dependent AA metabolism. These results highlight the need for reducing oral exposure to synthetic preservatives to improve metabolic disturbance under HFD conditions.


Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Lipid Metabolism , Parabens/toxicity , Diet, High-Fat/adverse effects , Oleic Acid/metabolism , Mice, Inbred C57BL
16.
Food Funct ; 15(3): 1598-1611, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38240388

Psychobiotics that modulate the gut-brain axis have emerged as promising interventions for clinical mental disorders. Bifidobacterium breve CCFM1025 has demonstrated antidepressant effects in both mice and patients with major depression. Nevertheless, the precise mechanism of action of CCFM1025 in emotional regulation remains ambiguous. This study aimed to explore the colonization capacity of CCFM1025 and its dose-dependent effect on emotional regulation in mice exposed to chronic unpredictable mild stress (CUMS). Additionally, we examined its regulatory effects on intestinal and serum metabolites in mice. The results revealed that CCFM1025 did not exhibit a heightened gut retention capability compared to the conspecific control strain. Nevertheless, CCFM1025 exhibited dose-dependent mitigation of anxiety-like behavior and memory impairment induced by CUMS, while also restoring gut microbiota homeostasis. Notably, CCFM1025 demonstrated a robust ability to exert potent gut metabolite regulation, resulting in significant elevation of bile acid and tryptophan metabolites in the gut contents and serum of mice. These findings indicate that the impact of CCFM1025 on emotional regulation may be attributed to its regulation of gut metabolites rather than its gut retention capability. The potential of Bifidobacterium to modulate bile acid metabolism may serve as a valuable avenue for regulating the gut microbiota and successfully exert emotion regulation.


Bifidobacterium breve , Depressive Disorder, Major , Emotional Regulation , Humans , Mice , Animals , Bifidobacterium breve/metabolism , Bifidobacterium , Stress, Psychological/metabolism , Bile Acids and Salts/metabolism , Depression/metabolism
17.
J Agric Food Chem ; 72(3): 1561-1570, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38197881

Purine metabolism plays a pivotal role in numerous biological processes with potential implications for brain function and emotional regulation. This study utilizes gene-edited probiotics and pseudo-germ-free mice to unravel this intricate interplay. Transcriptomic analysis identified a ribonucleoside-diphosphate reductase ß chain (nrdB) as a pivotal gene in purine metabolism within Bifidobacterium breve CCFM1025. Comparative evaluation between the wild-type and nrdB mutant strains revealed CCFM1025's effective reduction of xanthine and xanthosine levels in the serum and brain of stressed mice. Concomitantly, it downregulated the expression of the adenosine receptor gene (Adora2b) and inhibited the overactivation of microglia. These findings emphasize the potential of psychobiotics in modulating emotional responses by regulating purine metabolites and adenosine receptors. This study sheds light on novel pathways that influence emotional well-being through gut microbiota interactions and purine metabolic processes.


Bifidobacterium breve , Gastrointestinal Microbiome , Probiotics , Mice , Animals , Bifidobacterium breve/genetics , Bifidobacterium breve/metabolism , Purines/metabolism , Emotions
18.
Appl Microbiol Biotechnol ; 108(1): 99, 2024 Dec.
Article En | MEDLINE | ID: mdl-38204135

Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogenic fungi in forest soil. However, there is little understanding of how these fungal interactions evolve as forests move through succession stages. In this study, we used high-throughput sequencing to investigate fungal communities in young, intermediate, and old subtropical forests. At the genus level, EMF communities were dominated by Sebacina, Russula, and Lactarius, while Mycena was the most abundant genus in pathogenic fungal communities. The relative abundances of EMF and phytopathogenic fungi in different stages showed no significant difference with the regulation of different factors. We discovered that interactions between phytopathogenic fungi and EMF maintained a dynamic balance under the influence of the differences in soil quality attributed to each forest successional stage. The community composition of phytopathogenic fungi is one of the strong drivers in shaping EMF communities over successions. In addition, the EMF diversity was significantly related to plant diversity, and these relationships varied among successional stages. Despite the regulation of various factors, the positive relationship between the diversity of phytopathogenic fungi and EMF remained unchanged. However, there is no significant difference in the ratio of the abundance of EMF and phytopathogenic fungi over the course of successions. These results will advance our understanding of the biodiversity-ecosystem functioning during forest succession. KEY POINTS: •Community composition of both EMF and phytopathogenic fungi changed significantly over forest succession. •Phytopathogenic fungi is a key driver in shaping EMF community. •The effect of plant Shannon's diversity on EMF communities changed during the forest aging process.


Agaricales , Mycobiome , Mycorrhizae , Ecosystem , Forests , Soil
19.
Colloids Surf B Biointerfaces ; 234: 113691, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070369

SEMA4D-modified titanium surfaces can indirectly regulate macrophages through endothelial cells to achieve an anti-inflammatory effect, which is beneficial for healing soft tissues around the gingival abutment. However, the mechanism of surface-induced cellular phenotypic changes in SEMA4D-modified titanium has not yet been elucidated. SEMA4D activates the RhoA signaling pathway in endothelial cells, which coordinates metabolism and cytoskeletal remodeling. This study hypothesized that endothelial cells inoculated on SEMA4D-modified titanium surfaces can direct M2 polarization of macrophages via metabolites. An indirect co-culture model of endothelial cells and macrophages was constructed in vitro, and specific inhibitors were employed. Subsequently, endothelial cell adhesion and migration, metabolic changes, Rho/ROCK1 expression, and inflammatory expression of macrophages were assessed via immunofluorescence microscopy, specific kits, qRT-PCR, and Western blotting. Moreover, an in vivo rat bilateral maxillary implant model was constructed to evaluate the soft tissue healing effect. The in vitro experiments showed that the SEMA4D group had stronger endothelial cell adhesion and migration, increased Rho/ROCK1 expression, and enhanced release of lactate. Additionally, decreased macrophage inflammatory expression was observed. In contrast, the inhibitor group partially suppressed lactate metabolism and motility, whereas increased inflammatory expression. The in vivo analyses indicated that the SEMA4D group had faster and better angiogenic and anti-inflammatory effects, especially in the early stage. In conclusion, via the Rho/ROCK1 signaling pathway, the SEMA4D-modified titanium surface promotes endothelial cell adhesion and migration and lactic acid release, then the paracrine lactic acid promotes the polarization of macrophages to M2, thus obtaining the dual effects of angiogenesis and anti-inflammation.


Antigens, CD , Endothelial Cells , Semaphorins , Titanium , Rats , Animals , Titanium/pharmacology , Lactic Acid , Macrophages , Anti-Inflammatory Agents
20.
Adv Sci (Weinh) ; 11(4): e2302325, 2024 Jan.
Article En | MEDLINE | ID: mdl-38059818

Omega-6 fatty acids are the primary polyunsaturated fatty acids in most Western diets, while their role in diabetes remains controversial. Exposure of omega-6 fatty acids to an oxidative environment results in the generation of a highly reactive carbonyl species known as trans, trans-2,4-decadienal (tt-DDE). The timely and efficient detoxification of this metabolite, which has actions comparable to other reactive carbonyl species, such as 4-hydroxynonenal, acrolein, acetaldehyde, and methylglyoxal, is essential for disease prevention. However, the detoxification mechanism for tt-DDE remains elusive. In this study, the enzyme Aldh9a1b is identified as having a key role in the detoxification of tt-DDE. Loss of Aldh9a1b increased tt-DDE levels and resulted in an abnormal retinal vasculature and glucose intolerance in aldh9a1b-/- zebrafish. Transcriptomic and metabolomic analyses revealed that tt-DDE and aldh9a1b deficiency in larval and adult zebrafish induced insulin resistance and impaired glucose homeostasis. Moreover, alterations in hyaloid vasculature is induced by aldh9a1b knockout or by tt-DDE treatment can be rescued by the insulin receptor sensitizers metformin and rosiglitazone. Collectively, these results demonstrated that tt-DDE is the substrate of Aldh9a1b which causes microvascular damage and impaired glucose metabolism through insulin resistance.


Aldehydes , Insulin Resistance , Insulin , Animals , Zebrafish , Gluconeogenesis , Fatty Acids, Omega-6
...